Package: IVDML 1.0.0
IVDML: Double Machine Learning with Instrumental Variables and Heterogeneity
Instrumental variable (IV) estimators for homogeneous and heterogeneous treatment effects with efficient machine learning instruments. The estimators are based on double/debiased machine learning allowing for nonlinear and potentially high-dimensional control variables. Details can be found in Scheidegger, Guo and Bühlmann (2025) "Inference for heterogeneous treatment effects with efficient instruments and machine learning" <doi:10.48550/arXiv.2503.03530>.
Authors:
IVDML_1.0.0.tar.gz
IVDML_1.0.0.zip(r-4.5)IVDML_1.0.0.zip(r-4.4)IVDML_1.0.0.zip(r-4.3)
IVDML_1.0.0.tgz(r-4.5-any)IVDML_1.0.0.tgz(r-4.4-any)IVDML_1.0.0.tgz(r-4.3-any)
IVDML_1.0.0.tar.gz(r-4.5-noble)IVDML_1.0.0.tar.gz(r-4.4-noble)
IVDML_1.0.0.tgz(r-4.4-emscripten)IVDML_1.0.0.tgz(r-4.3-emscripten)
IVDML.pdf |IVDML.html✨
IVDML/json (API)
NEWS
# Install 'IVDML' in R: |
install.packages('IVDML', repos = c('https://cyrillsch.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/cyrillsch/ivdml/issues
Last updated 4 days agofrom:e1ab9dfb30. Checks:9 OK. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Mar 12 2025 |
R-4.5-win | OK | Mar 12 2025 |
R-4.5-mac | OK | Mar 12 2025 |
R-4.5-linux | OK | Mar 12 2025 |
R-4.4-win | OK | Mar 12 2025 |
R-4.4-mac | OK | Mar 12 2025 |
R-4.4-linux | OK | Mar 12 2025 |
R-4.3-win | OK | Mar 12 2025 |
R-4.3-mac | OK | Mar 12 2025 |
Exports:bandwidth_normalfit_IVDMLrobust_confintrobust_p_value_aggregatedsestandard_confint
Dependencies:data.tablejsonlitelatticeMatrixmgcvnlmerangerRcppRcppEigenxgboost