# -------------------------------------------- # CITATION file created with {cffr} R package # See also: https://docs.ropensci.org/cffr/ # -------------------------------------------- cff-version: 1.2.0 message: 'To cite package "IVDML" in publications use:' type: software license: GPL-3.0-or-later title: 'IVDML: Double Machine Learning with Instrumental Variables and Heterogeneity' version: 1.0.0 doi: 10.32614/CRAN.package.IVDML abstract: Instrumental variable (IV) estimators for homogeneous and heterogeneous treatment effects with efficient machine learning instruments. The estimators are based on double/debiased machine learning allowing for nonlinear and potentially high-dimensional control variables. Details can be found in Scheidegger, Guo and Bühlmann (2025) "Inference for heterogeneous treatment effects with efficient instruments and machine learning" <https://doi.org/10.48550/arXiv.2503.03530>. authors: - family-names: Scheidegger given-names: Cyrill email: cyrill.scheidegger@stat.math.ethz.ch orcid: https://orcid.org/0009-0005-2851-1384 repository: https://cyrillsch.r-universe.dev repository-code: https://github.com/cyrillsch/IVDML commit: e1ab9dfb30cceff70118c9f0297bbb2bc0f96856 url: https://github.com/cyrillsch/IVDML contact: - family-names: Scheidegger given-names: Cyrill email: cyrill.scheidegger@stat.math.ethz.ch orcid: https://orcid.org/0009-0005-2851-1384